COLD DRAWN SPECIAL STEEL PROFILES A GLOBAL LEADER AT YOUR SERVICE

+ENGINEERED SOLUTIONS WORLDWIDE

+ RELIABLE


+SKILLED

+PRECISE

+QUALITY +FLEXIBLE

CALVI GROUP

With a proud history at the technological and scientific forefront of the steel and metalworking industry today the Calvi Group companies look forward with confidence towards a future focused on unlocking the opportunities offered by new materials and new applications and on working together in synergy to respond to global industry challenges.

BU COLD DRAWING

The three companies of the Calvi Group cold drawing business unit are all highly specialized in the use of cold drawing forming technology to produce special steel profiles. The business unit produces a wide range of special profiles in all the main types of steel: common, carbon, surface hardening, alloy and stainless steel and is able to supply custom solutions of all types and shapes, based on the customers' drawing and specifications for countless applications across all industrial sectors (e.g. linear guides, automotive, transport, firearms, energy, railways, machines).

Ο Δ LVI

OSIPΔ

CALVI, it has been showing its best profile since 1950, being leader in the cold drawing of special steel profiles and designing the future. After relocating to Merate during the sixties, Calvi Spa became a reference model in the industrial local cluster for the design and manufacturing of steel rolling and drawing profiles. Its ability to deliver effective solutions quickly is reflected in its productivity levels, amounting to over 5,000 projects. A strength that has been built under the hallmark of highly advanced technological processing solutions. activity to the competence of Focus on customers' specific needs and technical engineering skills are Calvi Spa's strengths, resulting in an optimised production process which ensures at Sipa SpA: from technicians to total quality and cost savings.

SIPA, it Steel is the temperament of Sipa, which allows them to never leave customers emptyhanded. The history of Sipa ŚpA is a path of constant growth and development, which has always found its main strengths in quality and customer care. Operating since 1981, it is constantly oriented towards improving service and, today, offers high levels of efficiency and flexibility that allow competitive management even for small and extra-small lots. Steel is the world of Sipa, from company all its resources. Steel Life is the concept that sums up the dedication and passion expressed daily by all the people who work employees, from the sales force to management.

RATHBONE, us founded in 1905 by Andrew B. Rathbone in Palmer, MA, as a small pinion wire making manufacturer. A pioneer in the manufacturing of cold drawn special shaped bar and wire in the United States. Rathbone grew as a family owned company until after World War II. Rathbone's metal profile shapes helped the U.S. industrial base to produce enormous amounts of a wide variety of material required to win the war: the "Secret Weapon". In 2008, Rathbone became part of Calvi Group, Currently, Rathbone produces hundred's of custom profile shapes

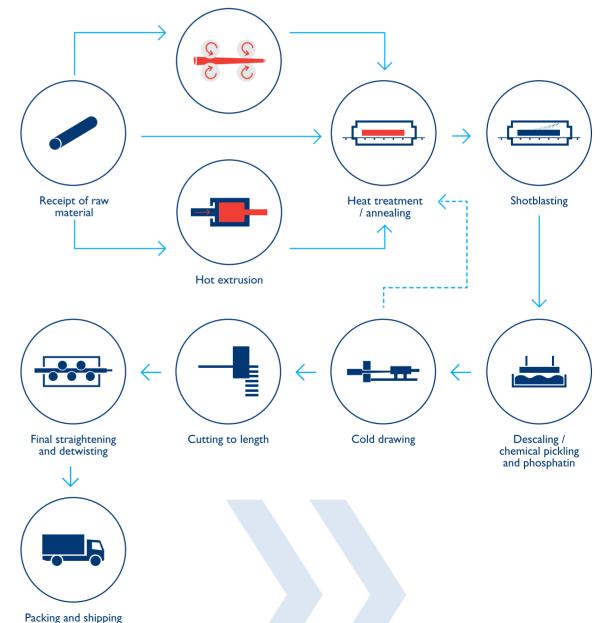
for a large number of markets. from water pipe gaskets to high tech, power generation to firearms, automotive to aerospace, medical to general industrial and many others. Över 100 years, Rathbone remains a leading cold drawn and cold rolled metal profiles supplier to American industry.

THREE COMPANIES SHARING A LONG TRADITION WITH A SINGLE **TECHNOLOGICAL EXCELLENCE** IN THE COLD DRAWING OF SPECIAL **STEEL PROFILES.**

COLD DRAWN PROFILES

// CALVI // SIPA // RATHBONE PRECISION METALS

COLD DRAWING


WE ARE PROVIDED WITH STATE-OF-THE-ART MACHINERY AND EQUIPMENT WHICH, COMBINED WITH THE EXPERIENCE OF ITS TECHNICAL STAFF, ENSURE THE HIGHLY COMPETITIVE ENGINEERING OF ITS MANUFACTURING PROCESS ACROSS A WIDE RANGE OF PRODUCTS.

Drawing is the main step of **profile manufacturing**. It involves the preparation of complex geometries with rigorous precision and provides the product with a final section according to the dimensions required by the customer. The feasibility analyses of drawn profiles are processed using **sophisticated calculation tools** (FEM) that ensure optimisation of the drawing activities during and after the project study phase.

All the equipment and the many tools for bars and coils are designed in-house. Once the drawing phase has been completed, other heat, chemical or mechanical treatment or new cold drawing steps may follow; otherwise the cutting phase begins.

Hot rolling

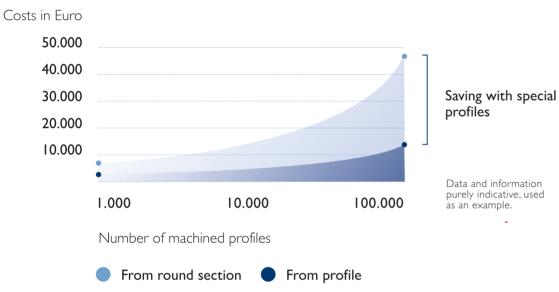
THE COLD DRAWING BU

CAPABILITIES

* Indicative data only, contact us in order to get specific technical information to your question.

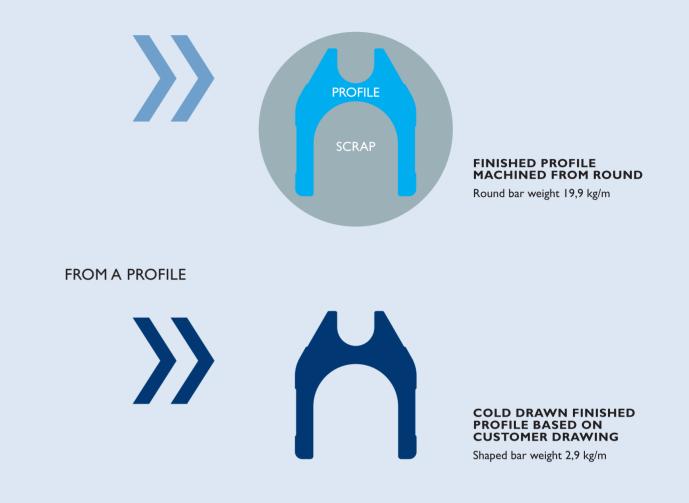
COMPANY		CALVI	CALVI			SIPA			RATHBONE			
LOT			>= 3000	>= 3000kg			200–5000 kg			200–5000 kg		
kg/m COMPLEXITY		>0,5 kg/r	>0,5 kg/m, <=50 kg/m I-6 pass			>1,5 kg/m, <=15 kg/m da 1 a 3 pass			>0,12 kg/m, <=8,5 kg/m I- 5 pass			
		I-6 pass										
LOT	KG/M	PASS	LOT	KG/M	PASS	LOT	KG/M	PASS	LOT	KG/M	PASS	
>50.000	60	6									_	
50.000	50										_	
40.000	40	5										
30.000	30											
20.000	20	4										
10.000	10											
5.000	5	3										
4.000	3											
1.000	I	2										
500	0,5	I										
200	0,1		Ι									

SPECIALTIES


	CALVI	SIPA	RATHBONE	
Application fields	Linear guides; Telescopic guides; Mini guides; Firearms.	Firearms; Automotive; Splined Shafts	Water Pipe Gaskets; Medical; Power Generation; Firearms	
Technical	Carbon restoration; Streightening.	Flexible equipment especially for small quantities.	Small to Mid-size profiles; Heat Treat and Temper; Adiabatic Shear and precision cut pieces	

BENEFITS

THE COMPETITIVE BENEFITS OF **SPECIAL COLD-DRAWN PROFILES BASED ON CUSTOMERS' DRAWING**


+**COST-EFFICIENT SOLUTIONS**

Comparison of total production costs: Profile machined from a round section vs. profile cold drawn by the Bu cold drawing companies.

FROM A ROUND SECTION

STANDARD	
SPECIFICATIONS	

SURFACE ROUGHNESS

Ra 3,2 µm max

CROSS SECTION From 50 to 10.000 mm²

MINIMUM QUANTITY 4,000 kg or less

according to the size

DEDECARBURISATION

From 0,1 mm max to 0 mm on request

MATERIAL

mm on request

steels to UNI, DIN, AISI (SAE), AFNOR, BS standards

From +/- 0.11 (standard) to +/- 0.02

Mild steels, alloyed, stainless and carbon,

DIMENSIONAL TOLERANCES STRAIGHTENING

TOLERANCES From I mm/m (standard) to 0,3 mm/m (special)

required fix lengths

FORMS OF DELIVERY

Cold drawn or anneale (stress relieving,

soft annealing, spherodizing), in coild or

bars 3000-4000 mm long according to

Guideline values. Tolerances below the reported values can be agreed upon on request.

APPLICATION FIELDS

MEETING THE TECHNICAL AND CONSTRUCTION REQUIREMENTS OF EVERY INDUSTRIAL SECTOR IS OUR PRIMARY GOAL

» LINEAR GUIDES

The profiles are used for manufacturing both linear guide rails and carriages. They are generally produced in carbon steels or induction hardening alloy steels and in case hardening steels.

» GASKET INSERT The profiles for the inserts in the seal rings are made in martensitic stainless

rings are made in martensitic stainless steels. These profiles have a special feature: their sharp-edges.

» FIREARMS

Special profiles for components in rifles and guns, such as for example, slides, breeches, levers, monoblocks, gas cylinder extractors. Steels with Cr-Mo or Cr-Mo-Ni are used, or other steels on the specific request of the customer.

» AUTOMOTIVE

Components for high pressure injection pumps found in diesel engines, clutch hubs, hinges, pole shoes in starter motors, by using steels for automatic bearings or according to industry-specific requirements.

» GENERAL MECHANICS Special profiles for components used in various sectors, including packaging, food, woodworking machinery, locks and construction, using carbon steel alloys or on specific request.

» RAIL TRANSPORT INDUSTRY

Profiles for structural stringers, various components. Carbon or austenitic stainless steel. Special profiles in long bars up to 8 m for seat fastening systems, or profiles that are custom cut and used in braking systems. Generally made in carbon steel. Profiles for securing overhead lines in carbon steel.

» POWER GENERATION Special profiles for hydroelectric power stators, with use of steels and carbon steels, or stainless steels for particular applications in nuclear power plants.

» MEDICAL INDUSTRY Our expertise with cold working a variety of alloys led us being awarded a contract to produce this Orthopedic Rod for use in a demanding medical application. We devised a single tool set that permitted us to cold draw either 455 or 304 Stainless to the customer's tensile and yield strength requirements necessary for this medical application.

» BUILDING Special stainless steel profiles with step protection and anti-skid properties. Structural profiles in carbon steel.

» SPLINED SHAFTS Standard or special profiles for splined shafts and universal joints, using quenched steels and carbon steels.

TECHNICAL TABLES

STRUCTURAL STEELS

	CORRESPONDENCES									
STEELS	UNI	EURONORM	DIN	WNr	AFNOR	BS	AISI/SAE/ ASTM	JIS/SUS	Others	
Non alloyed structural uses	S235JRG1	S235JRG	S235JRG1	1.0036	S235JRG I	S235JRG I	A 570	STB 35		
	(Fe 37)	(Fe 37-3 FN)	(St 37-2)	1.0038						
	S275JR	S275JR	S275JR	1.0044	S275JR	S275JR	A 510	SN 400 B		
	Fe 42 (Fe410)	(Fe 42-3 FN)	St 42.8							
	E295	E295	E295	1.0572	E295	E295		SS 50		
	(Fe 490)		(St50-2)							
	-	-	-	-	-	-	A36	-	-	
Case	C10	(CIOD)	CIO	1.0301	XCI0	En 2 A	1010	S 10 C		
hardening				1.0310						
	C15	CI5D	CI5	1.0401	XCI8	En 32 C	1015	S 15 C		
	18CrMo4	18CrMo4	18CrMo4	1.7243	18CD4	18CrMo4				
	16MnCr5	16MnCrS	16MnCrS	1.7131	I6MC5	16MnCr5	5115			
	16CrNi4		=							
	16NiCr11		14NiCr10	1.5732	I6NCII		3415	SNC 21		
	20NiCrMo2	20NiCrMo2-2	20NiCrMo2-2	1.6523	20NCD2	805 M 20	8620	SNCM 21		
		18Cr Ni Mo7-6	18Cr Ni Mo7-6	1.6587	18NCD6	18CrNi Mo7-6				
			16NiCrMo12-6	1.6782	I6NCD13					
			X19NiCrMo4	1.2764						
	(CI8)	-	-	-	-	-	1018	-	-	
Tempered	C30	C30	C30	1.0528	C30	C30	1030			
	C40	C40	C40	1.0511	C40	C40	1040			
	C45	C45	C45	1.0503	C45	C45	1043	S 45 C		
	C50	C50	C50	1.0540	C50	C50	1050			
	C60	C60	C60	1.0601	C60	C60	1060	S 60 CM		
	41Cr4	41Cr4	41Cr4	1.7035	42C4	530 M 40	5140	SCr 4		
	25CrMo4	25CrMo4	25CrMo4	1.7218	25CD4	25CrMo4	4130	SCM 2		
	42CrMo4	42CrMo4	42CrMo4	1.7225	42CrMo4	708 M 40	4140	SCM 4		
	40NiCrMo2	40NiCrMo2 KD	40NiCrMo2-2	1.6546	40NCD2	7	8640	SNCM 6		
					40NCD16					
Quenched	C43	C46	Cf45	1.1193				S 45 CM		
	C53	C53	Cf53	1.1213	XC 48 TS	C53		S 50 CM		
	41CrMo4	41CrMo4	41CrMo4	1.7223		5/1	4142	SNB 22-1		
	51CrMoV4	51CrMoV4	51CrMoV4	1.7701	51CDV4	-	-	-		
			58CrMoV4)							
For	100Cr6	100Cr6	100Cr6	1.3505	100C6	2S. 135	A29 (A295)	SUJ2		
bearings	100CrMo7	100CrMo7	100CrMo7	1.3537	100CD7		A485			
Nitriding	41CrAlMo7	41CrAIMo7	41CrAlMo7	1.8509		En 41 B	6431	SACM I		
For springs	55Si7	55Si7	55Si7	1.5026	55\$7	En 45 A	9255			
	50CrV4	51CrV4	51CrV4	1.8159	50CV4	En 47	6150	SUP 10		
Automatic	9SMn28	LISMn30	9SMn28	1.0715	S 250 Pb	230 M 07	1213	SUM 22		
	9SMnPb28	I ISMnPb30	9SMnPb28	1.0718	S 250 Pb	I ISMnPb30	12L13	SUM 23 L		
	-	-	-	-	-	-	7	-	-	
	-	-	-	-	-	-	1215	-	-	

STRUCTURAL STEELS

1/2

STEELS	CORRESPONDENCES									
	UNI	EURONORM	DIN	WNr	AFNOR	BS	AISI/SAE/ ASTM	JIS/SUS	Others	
For tools	55WCrV8KU	55WCrV8	60WCrV8	1.2550						
	90MnCrV8 KU	90MnCrV8	90MnCrV8	1.2842	90 MV 8	BO 2	O 2			
	107CrV3 KU	107CrV3	115CrV3	1.2210			L 2			
Iron-base superalloy	-	-	-	-	-	-	-	-	A286 (UNS S66286	
Copper,	-	-	-	-	=	-	102	=	-	
Brass, Bronze	-	-	-	-	-	-	110	-	-	
	-	-	-	-	=	-	360	=	-	
Nickel - Copper							400	-	-	

STAINLESS STEELS

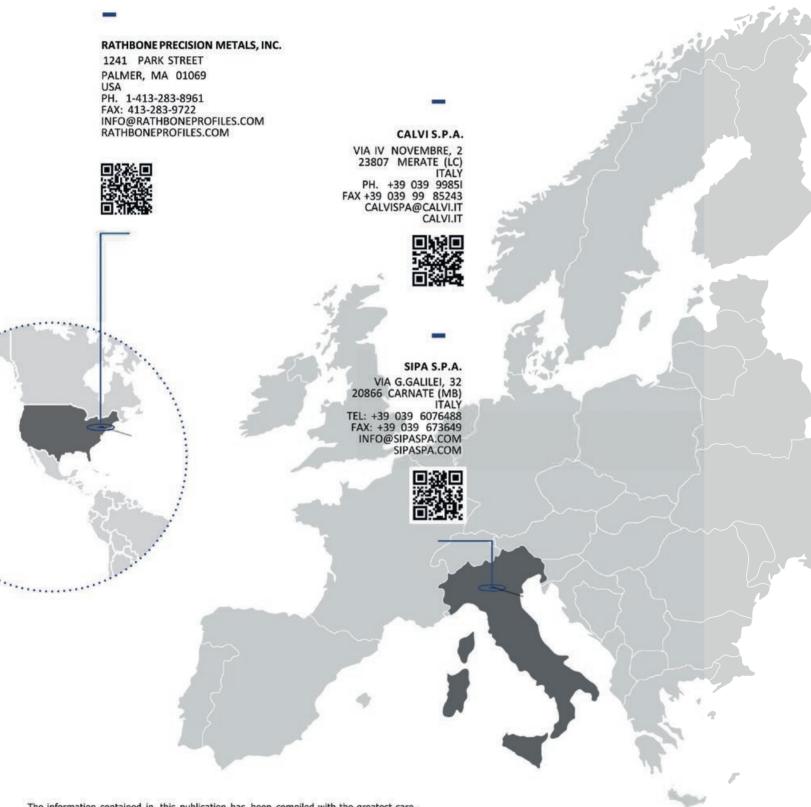
STEELS	CORRESPONDENCES									
	UNI	EURONORM	DIN	WNr	AFNOR	BS	AISI/SAE/ ASTM	JIS/SUS	Others	
Austenitic STAINLESS STEELS	X8CrNiS18-9	X8CrNiS18-9	X8CrNiS18-9	1.4305	Z 8 CNF 18-09	303 S 31	303	SUS 303		
	X5CrtNi18-10	X5CrNi18-10	X5CrNi18-10	1.4301	Z 6 CN 18-09	304 S 15	304	SUS 304		
	X2CrNi19-11	X2CrNi19-11	X2CrNi19-11	1.4306	Z 3 CN 18-10	304 S I I	304 L	SUS 304 L		
	X4CrNi18-12	X4CrNi18-12	X4CrNi18-12	1.4303	Z 5 CN 18-11 FF	305 S 19	305	SUS 305		
	X16CrNi23-14	X15CrNiSi20-12	X15CrNiSi20-12	1.4828	Z 17 CNS 20-12	309 S 24	309	SUH 309		
	X6CrNi25-20	XI5CrNiSi25-21	X15CrNiSi25-20	1.4841	Z 15 CNS 25-20	314 S 25	310	SUH 310		
	X6Cr1Ni25-20	X8CrNi25-21	X8CrNi25-21	1.4845	Z 8 CN 25-20	310 \$ 24	310S	SUS 310S		
	X3CrNiMo17-13-3	X5CrNiMo17-12-3	X5CrNiMo17-12-2	1.4401	Z 6 CND 17-11	316531	316	SUS 316		
	X2CrNiMo17-12	X2CrNiMo17-12-2	X2CrNiMo17-12-2	1.4404	3 CND 17-12-02	316511	316L	SUS 316L		
	X6CrNiTi18-11	X6CrNiTi18-10	X6CrNiTi18-10	1.4541	Z 6 CNT 18-10	32 I S 3 I	321	SUS 321		
	X6CrNINb18-11	X6CrNINb18-10	X6CrNINb18-10	1.4550	Z 6 CNNb 18-10	347 S 31	347	SUS 347		
	-	-	-	-	-	-	302	-	-	
Ferritic	X6Crl7	X6Cr17	X6Cr17	1.4016	Z8C17	430 S 17	430	SUS 430		
STAINLESS	XI4CrMoSI7	XI4CrMoSI7	XI4CrMoSI7	1.4104	Z 13 CF 17	XI4 CrMoSI7	430F	SUS 430F		
STEELS	X6CrMo17-1	X6CrMo17-1	X6CrMo17-1	1.4113	Z 8 CD 17-01	434 S 17	434	SUS 434		
	X6Crl3	X6Crl3	X6Crl 3	1.4000	Z8C12	403 S 17	403	SUS 403		
	X6CrAII3	X6CrAII3	X6CrAII3	1.4002	Z 8 CA 12	405 S 17	405	SUS 405		
Martensitic	XI2CrI3	XI2CrI3	XI2CrI3	1.4006	Z 3 C 3	410521	410	SUS 410		
STAINLESS	XI2 CrSI3	XI2 CrSI3	X12 Cr513	1.4005	Z CF 3	416521	416	SUS 416		
STEELS	X20Cr13	X20Crl3	X20Crl3	1.4021	Z 20 C 13	420 S 37	420	SUS 420JI		
	X30Cr13	X30Cr13	X30Crl3	1.4028	Z 33 C 13	420 S 45		SUS 420j2		
	X39Cr13	X39Cr13	X39Crl3	1.4031	Z 40 C 14	X39Crl3				
	XI7CrNi16-2	XI7CrNi16-2	XI7CrNi16-2	1.4057	Z 15 CN 16-02	431 S 29	431	SUS 431		
DUPLEX	X2CrtNiMoN22-5-3	X2CrtNiMoN22-5-3	X2CrNiMoN22-5-3	1.4462	Z3 CND 22-05 Az	318513	(22-05)	SUS 329J3L		
PH	X5CrNiCuNb16-4	X5CrNiCuNb16-4	X5CrNiCuNb16-4	1.4542	Z7 CNU 17-04	X5CrNiCuNb16-4	630	SUS 630		
							(17-04 PH)			
OTHERS							UNS n° S 42010 (TrimRite)			

This table represents only some application. Many other steel alloys can be used on request.

PRODUCT CERTIFICATION

+

The Companies of the Cold Drawing Business Unit ensures the physical and mechanical characteristics of its special profiles thanks to the prompt action of internal laboratories, which are able to verify the performance levels by means of:


TECHNOLOGICAL TESTS CHEMICALANALYSIS METALLOGRAPHIC TESTS NON-DESTRUCTIVE TESTS SURFACE TESTS

+ IATF 16949* *Calvi

+ISO 14001* *Calvi

+ISO 45001*

+ISO 9001* *Calvi, Sipa, Rathbone

The information contained in this publication has been compiled with the greatest care. We cannot assume liability with regard to possible mistakes or missing information. We reserve the right to implement changes that are conducive to progress (further development). ©Calvi Group

we are part of

CALVI HOLDING

ITA SIPASPA.COM

USA RATHBONEPROFILES.COM